A degree-theoretic approach to solution stability of parametric generalized equations governed by set-valued maps
نویسندگان
چکیده
This paper is concerned with solvability and solution stability of parametric generalized equations governed by set-valued mappings. By a degree-theoretic approach for multifunctions, some new results on lower semicontinuity of the solution map to a parametric generalized equation are established.
منابع مشابه
Hölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملStability Theory for Parametric Generalized Equations and Variational Inequalities via Nonsmooth Analysis
In this paper we develop a stability theory for broad classes of parametric generalized equations and variational inequalities in finite dimensions. These objects have a wide range of applications in optimization, nonlinear analysis, mathematical economics, etc. Our main concern is Lipschitzian stability of multivalued solution maps depending on parameters. We employ a new approach of nonsmooth...
متن کاملLower semicontinuity for parametric set-valued vector equilibrium-like problems
A concept of weak $f$-property for a set-valued mapping is introduced, and then under some suitable assumptions, which do not involve any information about the solution set, the lower semicontinuity of the solution mapping to the parametric set-valued vector equilibrium-like problems are derived by using a density result and scalarization method, where the constraint set $K$...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کامل